Ein Beitrag zur Kristallchemie von CaBeGd₂O₅ und BaBeNd₂O₅

Hk. Müller-Buschbaum und S. Münchau

Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstr. 40-60, 24098 Kiel (Deutschland)

(Eingegangen am 21. Oktober 1993)

Abstract

Single crystals of (I) CaBeGd₂O₅ and (II) BaBeNd₂O₅ were prepared by CO₂-LASER technique and investigated by X-ray methods. I crystallizes with orthorhombic symmetry, space group $D_{2h}^{1/6}$ -Pnma, a=9.319 Å, b=7.0448 Å, c=6.3965 Å, Z=4 and II monoclinic, space group C_{2h}^{5} -P2₁/c, a=7.397 Å, b=6.684 Å, c=9.753 Å, $\beta=90.57^{\circ}$, Z=4. Both compounds form a Kagomé framework, occupied by Ca²⁺ and Gd³⁺ statistically or Ba²⁺ and Nd³⁺ in an ordered manner.

Zusammenfassung

Einkristalle von (I) CaBeGd₂O₅ und (II) BaBeNd₂O₅ wurden mit CO₂-LASER-Technik dargestellt und röntgenographisch untersucht. I kristallisiert orthorhombisch, Raumgruppe D_{2h}^{i5} -Pnma, a=9,319 Å, b=7,0448 Å, c=6,3965 Å, Z=4 und II monoklin, Raumgruppe C_{2h}^{5} -P2₁/c, a=7,397 Å, b=6,684 Å, c=9,753 Å, $\beta=90.57^{\circ}$, Z=4. Beide Verbindungen bilden ein Kagomégerüst, welches durch Ca²⁺ und Gd³⁺ statistisch bzw. durch Ba²⁺ und Nd³⁺ in geordneter Weise besetzt ist.

1. Einleitung

Vor einigen Jahren wurde über Verbindungen der Zusammensetzung MBeLn₂O₅ mit M=Ca und Ln=La, Y [1], Pr [2]; $M \equiv Sr$ und $Ln \equiv La$ [3], Nd, Sm [4] sowie M≡Ba und Ln≡La [4] berichtet. Diese zeichnen sich durch ein Kagomégerüst aus, welches von O²⁻ um die M²⁺- und Ln³⁺-Ionen aufgebaut wird. Mit Ausnahme der Bariumverbindungen besetzen M²⁺ und Ln³⁺ die Metallpositionen im Kagomégerüst statistisch. Die verbleibenden tunnelförmigen Hohlräume sind mit weiteren Ln³⁺-Ionen und Be²⁺ aufgefüllt. Be²⁺ erhält eine tetraedrische Koordination. Ist $M \equiv Ba^{2+}$, so ordnen sich die Ba²⁺- und Ln³⁺-Ionen im Kagomégerüst, begleitet von einer Symmetrieerniedrigung. Letztere Beobachtung beruht auf einer einzigen untersuchten Substanz, so dass es notwendig erschien, diesen Effekt an einer weiteren Substanz der Zusammensetzung Ba-BeLn₂O₅ zu bestätigen. Zum Vergleich wurde ein Vertreter (CaBeGd₂O₅) mit ungeordneter Metallverteilung im Kagomégerüst dargestellt.

2. Darstellung von (I) CaBeGd₂O₅- und (II) BaBeNd₂O₅-Einkristallen mit anschliessender röntgenographischer Untersuchung

Zur Darstellung von (I) wurden $CaCO_3$ (Merck, p.a.), BeO (Merck, >98%) und Gd_2O_3 (Auer-Remy, 99,9%) von (II) BaCO₃ (Merck, 98,5%), BeO und Nd₂O₃ (Auer-Remy, 99,9%) im Verhältnis 1:1:1 bzw. 1,5:1:1 innig vermengt und zu Tabletten verpresst. Diese wurden zunächst 24 h bei 1000 bzw. 1050 °C getempert, um die Carbonate mit Lanthanoidoxiden vorzureagieren. Anschliessend wurde mit CO₂-LASER-Energie bis zur Schmelze der Reaktionsmischung (Oberflächentemperatur der Präparate>2000 °C) erhitzt und innerhalb von 40 min die Temperatur auf etwa 1000 °C abgesenkt, danach die Energiezufuhr spontan unterbrochen. Bei Substanz (II) traten während der Hochtemperaturreaktion Verluste von BaO auf, die durch den Überschuss an BaO im Reaktionsansatz kompensiert wurden. Aus den erkalteten Reaktionsprodukten wurden mechanisch farblose bzw. schwach violette Einkristalle abgetrennt. Bei der Untersuchung mit energiedispersiver Messtechnik (Elektronenmikroskop Leitz SR 50, EDX-System Link AN 10000) wurden unter Anwendung der standardfreien Messtechnik Ca, Ba, Gd und Nd nachgewiesen. Die energetische Nähe der Barium Lßund Neodym La-Linien erschwerte die halbquantitative Auswertung, wobei ausserdem Beryllium wegen des Be-Schutzfensters nicht nachgewiesen werden konnte.

Mit Weissenbergaufnahmen und Vierkreisdiffraktometermessungen wurden die kristallographischen Daten bestimmt. Diese sind mit den Messbedingungen in

	(I)	(II)	
Kristallsystem	Orthorhombisch	Monoklin	
Raumgruppe	D_{2h}^{16} -Pnma	$C_{2h}^{5}-P2_{1}/c$	
Elementarzellabmessungen	a = 9,3190(29) Å	a = 7,3969(60) Å	
	b = 7,0448(18) Å	b = 6,6836(90) Å	
	c = 6,3956(14) Å	c = 9,7530(64) Å	
		$\beta = 90,571(53)^{\circ}$	
Zellvolumen	419,87 Å ³	482,14 Å ³	
Formeleinheiten pro	4	4	
Elementarzelle			
Diffraktometer	Siemens AED2	Philips PW	
		1100/Stoe	
Strahlung/Monochromator	MoKα/Graphit		
2-0-Bereich	5–70°	570°	
Messmodus	background-peak-backgr	ound	
Max. Messzeit pro Reflex	1–2 s	1,5–4 s	
Korrekturen	Untergrund, Polarisations-, Lorentzfaktor		
Absorptionskorrektur	EMPIR [11]	DIFABS [12]	
Anzahl vermessener Reflexe	1109	2267	
Symmetrieunabhängige Reflexe	896	1806	
Reflexe für $F_o > 3\sigma(F_o)$	655	1020	
Parameter	24	38	
Gütefaktoren R ($F_o > 3\sigma(F_o)$)	R = 0,049	R=0,053	

TABELLE 1. Kristallographische Daten und Messparameter für (I) $CaBeGd_2O_5$ und (II) $BaBeNd_2O_5$ (Standardabweichungen in Klammern)

Abb. 1. (a) Perspektivische Darstellung des Kagoménetzes mit eingelagerten BeO_4 -Tetraedern (eng schraffiert) und GdO_7 -Polyedern (weit schraffiert) in $CaBeGd_2O_5$. Kleine offene Kugel = O^{2^-} , grosse Kugel mit Segment = Ca^{2^+}/Gd^{3^+} . Die trigonalen Prismen von O^{2^-} um Ca^{2^+}/Gd^{3^+} sind transparent gezeichnet. (b) Gleiche Darstellung wie in (a) für BaBeNd₂O₅. Grosse Kugel mit Segment = Ba^{2^+} , grosse Kugel mit Kreuz = Nd^{3^+} .

TABELLE 2. Atomparameter und isotrope Temperaturfaktoren für (I) CaBeGd₂O₅ und (II) BaBeNd₂O₅ mit Standardabweichungen in Klammern

Atom	Lage	x	у	z	В (Å ²)
(I)					
Gd	4c	0,9764(1)	0,25	0,5973(2)	0,41(1)
Gd/Ca ^a	8d	0,8268(1)	0,0226(2)	0,0778(2)	0,49(1)
Be	4c	0,1042(10)	0,25	0,1952(11)	0,60(8)
01	8d	0,428(1)	0,943(1)	0,809(1)	0,79(8)
O2	4c	0,224(1)	0,25	0,668(1)	0,94(8)
03	4c	0,279(1)	0,25	0,138(1)	0,54(8)
O4	4c	0,508(1)	0,25	0,522(1)	0,61(8)
(II)					
Nd1	4e	0,2556(2)	0,5935(2)	0,9772(1)	0,34(2)
Nd2	4e	0,5218(2)	0,9174(3)	0,1761(1)	0,35(2)
Ba	4e	0,0205(2)	0,0824(3)	0,8267(1)	0,90(2)
Be	4e	0,2612(11)	0,1935(11)	0,0975(11)	0,73(9)
01	4e	0,929(1)	0,810(1)	0,437(1)	0,76(9)
O2	4e	0,438(1)	0,182(1)	0,566(1)	0,96(9)
O3	4e	0,284(1)	0,661(1)	0,217(1)	0,67(9)
O4	4e	0,279(1)	0,137(1)	0,269(1)	1,17(9)
O5	4e	0,274(1)	0,520(1)	0,508(1)	0,78(9)

^aBesetzt mit 0,5 Gd+0,5 Ca.

TABELLE 3. Interatomare Abstände für (I) $CaBeGd_2O_5$ und (II) BaBeNd₂O₅ (Å) it Standardabweichungen in Klammern

(I)			
Gd/Ca-O4	2,414(7)	Gd-O1	2,289(7) (2×)
Gd/Ca-O2	2,440(6)	Gd-O2	2,351(9)
Gd/Ga-O3	2,463(5)	Gd-O3	2,377(8)
Gd/Ca-O4	2,487(6)	Gd-O4	2,453(7)
Gd/Ca-O1	2,494(9)	Gd-O1	2,458(7) (2×)
Gd/Ca-O2	2,560(5)	Gd - O2	2,790(9)
Gd/Ca-O3	2,562(5)		
Gd/Ca-O1	2,706(7)	Be-O1	1,571(8) (2×)
Gd/Ca-O1	2,732(9)	Be-O4	1,653(11)
		Be-O3	1,670(13)
(II)			
Nd1-O2	2,384(8)	Ba-O5	2,654(9)
Nd103	2,389(10)	Ba-O1	2,700(10)
Nd1-O2	2,437(8)	Ba - O4	2,741(8)
Nd1-01	2,486(8)	Ba-O5	2,755(9)
Nd1-O1	2,527(8)	Ba-O3	2,763(8)
Nd1-O4	2,556(9)	Ba-O1	2,783(9)
Nd1-05	2,604(8)	Ba-O4	2,809(8)
Nd1O3	3,031(9)	Ba-O3	2,860(8)
		Ba - O1	2,917(8)
Nd2-O3	2,402(8)	Be-O2	1,583(11)
Nd2-O4	2,440(8)	Be-O1	1,640(11)
Nd205	2,456(9)	Be-O5	1,676(12)
Nd2-05	2,482(9)	Be-O4	1,719(14)
Nd2O3	2,491(8)		
Nd2-O4	2,497(8)		
Nd202	2,616(10)		
Nd2O2	2,855(9)		
Nd202	2,948(8)		

Tabelle 1 zusammengefasst. Mit dem Programm SHELX [5] wurden die Parameter verfeinert. Die endgültigen Werte gibt Tabelle 2 wieder. Mit diesen Daten berechnen sich die interatomaren Abstände der Tabelle 3.

Diskussion

Die voranstehenden Röntgenstrukturanalysen zeigen, dass CaBeGd₂O₅ und BaBeNd₂O₅ isotyp zu CaBeLn₂O₅ [1, 2] bzw. BaBeLn₂O₅ [4] sind. Die Kristallstrukturen wurden früher mehrfach beschrieben, so dass hier auf eine komplette Wiedergabe verzichtet werden kann. Interessant sind jedoch strukturelle Details, die sich auf geordnete und ungeordnete Besetzungen der Metallpunktlagen beziehen. Wie in der Einleitung angedeutet, bilden Stoffe der Formel MBeLn₂O₅ ein Kagomégerüst. Dieses entsteht durch Verknüpfung trigonaler Prismen von O²⁻ um M²⁺/Ln³⁺ über deren Längskanten und Dreiecksflächen. Die Verknüpfung trigonaler (M/Ln)O₆-Prismen über die Prismenlängskanten führt zunächst zu Kagoménetzen, deren Stapelung über die Prismendreiecksflächen ein Kagomégerüst mit deformierten Sechsecktunneln ergibt. Der wesentliche Unterschied zwischen der orthorhombisch kristallisierenden Verbindung CaBeGd₂O₅ und der monoklin verzerrten BaBeNd₂O₅ besteht in der Besetzung der LnO₆-Prismen durch Ca²⁺ und Gd³⁺ bzw. Ba²⁺ und Nd³⁺. Diesen Sachverhalt gibt Abb. 1 wieder. Beide Teilbilder zeigen, dass die Tunnel im Kagomégerüst durch BeO₄-Tetraeder und LnO₇-Polyeder aufgefüllt sind. Im Gerüst selbst sind bei orthorhombischer Symmetrie (CaBeGd₂O₅) alle Metallpositionen statistisch mit Ca²⁺ und Gd³⁺ besetzt. Die Folge sind relativ ausgeglichene Polyederabmessungen.

In der monoklin kristallisierenden Substanz Ba-BeNd₂O₅ sind schmale und breite Kagoménetze längs [100] miteinander verknüpft. Diesen Sachverhalt gibt Abb. 1(b) wieder. Aus der Sicht der Ionenradien von Ba^{2+} (1,36 Å) und Nd³⁺ (0,99 Å) [6] ist dies so zu erklären, dass in den breiten Kagoménetzen ausschliesslich BaO₆- und in den schmalen NdO₆-Prismen verknüpft sind. Die Ordnung von Ba2+ und Nd3+-Ionen ist röntgenographisch wegen des sehr ähnlichen Streuvermögens beider Ionen nicht zu beweisen. Berechnungen der Coulombterme der Gitterenergie [7, 8] bestätigen jedoch, dass die kleineren Polyeder des Kagomégerüsts mit Nd³⁺ und die grösseren mit Ba²⁺ besetzt sind. Es ist interessant, dass sich die Volumenverkleinerung der NdO₆-Prismen nur auf die Prismenlängskanten auswirkt. Die Grösse der Prismendreiecksflächen bleibt erhalten.

Dank

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-57896 in angefordert werden.

Alle Rechnungen wurden auf der elektronischen Rechenanlage IBM RS/6000 des Instituts für Anorganische Chemie durchgeführt und die Zeichnungen mit einem modifizierten ORTEP-Programm [9, 10] erstellt.

Der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmitteln.

Literatur

- 1 F. Schröder und Hk. Müller-Buschbaum, J. Less-Common Met., 137 (1988) 211.
- 2 F. Schröder und Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem., 563 (1988) 59.
- 3 F. Schröder und Hk. Müller-Buschbaum, Monatsh. Chem., 118 (1987) 959.
- 4 F. Schröder und Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem., 561 (1988) 7.
- 5 G.M. Sheldrick, SHELX-Program for Crystal Structure Determination, Version 1.1.76, Cambridge, 1976.
- 6 R.D. Shannon, Acta Crystallogr., A32 (1976) 751.
- 7 R. Hoppe, Angew. Chem., 78 (1966) 52.
- 8 R. Hoppe, Adv. Fluorine Chem., 6 (1970) 387.
- 9 C.K. Johnson, *Report ORNL-3794*, Oak Ridge National Laboratory, TN, 1965.
- 10 K.B. Plötz, Dissertation, Universität Kiel, 1982.
- 11 Psi-scan Programm, Fa Stoe & Cie., Darmstadt, 1987.
- 12 N. Walker und D. Stuart, Acta Crystallogr., A39 (1983) 158.